
Assignment 6
Algorithm Design and Analysis

bitjoy.net

January 2, 2016

I choose problem 1,2,3,4,5,6.

1 Integer Programming
We first show that Integer Programming is in NP. Obviously, given an n-vector x,

Ax ≥ b can be verified in polynomial time, so it is in NP.
We then prove that 3SAT ≤p ILP . Given a 3SAT instance like this:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x4) (1)
We will have corresponding variables y1, y2, y3, y4 in our ILP, if xi = true, then

yi = 1 otherwise yi = 0.

max 0
s.t. y1 + y2 + y3 ≥ 1

y1 + (1− y2) + y4 ≥ 1
yi ∈ {0, 1} i = 1, ..., 4

(2)

If (1) can be satisfied, the corresponding yis are the optimal solution to (2), that’s
to say (2) has optimal solution. If (2) has optimal solution, the corresponding xis make
(1) be true. If (1) can’t be satisfied, (2) has no optimal solution, and vice versa. So,
3SAT ≤p ILP .

Integer-programming is in NP-complete.

2 Mine-sweeper
Here is the MINESWEEPER language:
MINESWEEPER: {G, ξ | G is a graph and ξ is a partial integer labeling of G, and

G can be filled with mines in such a way that any node v labeled m has exactly m
neighboring nodes containing mines.}

Deciding if a graph is in the MINESWEEPER language is NP-complete.
First, given a graph with nodes labeled with integers or containing mines, we can

verify it in polynomial time. Just check whether each node labeled with m has exactly
m neighboring nodes containing mines.

Second, we prove 3SAT ≤p MINESWEEPER. Suppose we have one 3SAT clause

(x1 ∨ ¬x2 ∨ x3) (3)

1

http://bitjoy.net


1

xi ¬xi

Figure 1: Gadget for each variable.

For each variable, we construct a gadget like Figure 1.
If xi = true, then xi is filled with mine, otherwise ¬xi is filled with mine. The top

node labeled with ’1’ forces that only one of xi and ¬xi can be true.
For clause (3), we have:

1

x2 ¬x2

1

x3 ¬x3

1

x1 ¬x1

3

Figure 2: Gadget for each clause.

For each true assignment of this clause, we can find a placement of mines makes the
graph consistent. Figure 3 is one of true assignment examples.

1

x2 ¬x2

1

x3 ¬x3

1

x1 ¬x1

3

Figure 3: {x1 = true, x2 = false, x3 = false} is one of true assignment for clause (3),
we find a placement of mines makes the graph consistent.

For the false assignment of this clause, we can’t find any placement of mines makes
the graph consistent. Figure 4 is the false assignment.

2



1

x2 ¬x2

1

x3 ¬x3

1

x1 ¬x1

3 ← Not consistent!

Figure 4: {x1 = false, x2 = true, x3 = false} is the false assignment for clause (3), we
can’t find any placement of mines makes the graph consistent.

So, if 3SAT can be satisfied, graph G is in the MINESWEEPER language, otherwise
not.

Mine-sweeper is in NP-complete.

3 Half-3SAT
First, Half-3SAT is in NP. Given a particular assignment of n variables, we can

check if m clauses satisfy Half-3SAT conditions in polynomial time. Just check each
clause, if half are true, half are false, it’s Half-3SAT, otherwise not.

Second, we prove 3SAT ≤p Half−3SAT . Given a instance of 3SAT with m clauses,
we construct a Half − 3SAT instance with 4m clauses like this. First m clauses are
exactly the same as 3SAT . Next, we create m clauses of the form

(p ∨ ¬p ∨ q) (4)

which is always true. Next, we create 2m of clauses of the form

(p ∨ q ∨ r) (5)

These 2m clauses are always true or always false.
If 3SAT is satisfied, we set last 2m clauses be false. So there are 2m true clauses

and 2m false clauses. Thus, Half − 3SAT is satisfied.
If Half − 3SAT is satisfied, as there are m (4) clauses, which is always true, so

the last 2m (5) clauses can only be false. Thus, the first m clauses are true, 3SAT is
satisfied.

Half-3SAT is in NP-complete.

4 Solitaire Game
First, Solitaire Game is in NP. Given a final board status, we can determine whether

it satisfies the winning condition in polynomial time. Just check whether each column
contains only stones of a single color and each row contains at least one stone. For n×n
board, it takes O(2n), so Solitaire Game is in NP.

Second, we prove 3SAT ≤p SOLITAIRE. Given a instance of 3SAT with 2 clauses
and 4 variables:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x4) (6)

3



x1 x2 x3 x4

c1 N N N
c2 N � N
× × × × ×
× × × × ×

Table 1: Initial board for (6), Nfor xi and �for ¬xi, one row for one clause.

For each variables, Nfor xi and �for ¬xi. So we get Table 1 for (6).
For (y1 ∨ y2 ∨ y3), yi can be xj or ¬xj. For each clause, if yi = false, we remove

the corresponding stone. If (6) can be satisfied, then Table 1 is a winnable game
configuration. Table 2 is one of true examples.

x1 x2 x3 x4

c1 N N N
c2 N N
× × × × ×
× × × × ×

Table 2: {x1 = true, x2 = true, x3 = true, x4 = true} is the true assignment for clause
(6), ¬x2 = false, so removing the red stone in c2, we win the game.

For any false assignment of (6), Table 1 is not a winnable game configuration. Table
3 is one of false examples.

x1 x2 x3 x4

c1 N N
c2
× × × × ×
× × × × ×

Table 3: {x1 = false, x2 = true, x3 = true, x4 = false} is the false assignment for
clause (6), similarily, removing < c1, x1 >,< c2, x1 >,< c2, x2 >,< c2, x4 >, we lose the
game.

So, if 3SAT can be satisfied, G is a winnable game configuration, otherwise not.
Solitaire Game is in NP-complete.

5 Directed Disjoint Paths Problem
First, Directed Disjoint Paths Problem is in NP. Given k paths P1, P2, ..., Pk, we

can determine whether they are Directed Disjoint Paths in polynomial time. Just go
through every path and record the nodes, if more than one path go through a node,
they are not Disjoint Paths.

Second, we prove 3SAT ≤p Directed Disjoint Paths Problem. Given an arbitrary
3SAT formula, we construct a network routing problem like this: For each clause Ci,
we create a source/sink pair (si, ti), and a node xi

j(¬xi
j) for each literal xj(¬xj) in the

clause. Add edges < si, x
i
j > and edges < xi

j, ti >. In addition, we create source/sink
pair (sj, tj) for each variable xj, we get a total of k = q + n source/sink pairs, where q
is the number of clauses and n is the number of literals.

4



For example, given a 3SAT instance with two clauses and three variables:

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) (7)

We construct a graph G like Figure 5.

x1 ¬x2 x3

s1

t1

¬x1 x2 x3

s2

t2

x1¬x1

s3

t3

x2 ¬x2

s4

t4

x3 ¬x3

s5

t5

Figure 5: Graph G for 3SAT formula (7).

We now show that if 3SAT can be satisfied, there are node-disjoint paths for k pairs
of nodes (si, ti).

Given a true assignment of 3SAT , we construct the k paths as follows. For each
(sj, tj) pair that representing a variable xj, we choose the path that corresponds to the
literal that is not set to true in the satisfying assignment. For example, if xj = true, we
choose path (sj, tj) that goes through ¬xj, if xj = false, we choose path (sj, tj) that
goes through xj.
{x1 = true, x2 = true, x3 = false} is a true assignment of formula (7), according to

rules above, we get Figure 6, which has k = 5 node-disjoint paths.

x1

×
¬x2

×
x3

s1

t1

×
¬x1 x2

×
x3

s2

t2

x1¬x1

s3

t3

x2 ¬x2

s4

t4

x3 ¬x3

s5

t5

Figure 6: When {x1 = true, x2 = true, x3 = false}, we find k = 5 node-disjoint paths.

5



{x1 = false, x2 = true, x3 = false} is a false assignment of formula (7), according
to rules above, we can’t find k = 5 node-disjoint paths. Figure 7 shows this case.

×
x1

×
¬x2

×
x3

s1

t1

¬x1 x2

×
x3

s2

t2

x1¬x1

s3

t3

x2 ¬x2

s4

t4

x3 ¬x3

s5

t5

Figure 7: When {x1 = false, x2 = true, x3 = false}, s1 can’t reach t1, failed.

Similarly, if we already have k node-disjoint paths in graph G, we just do the inverse
process, the 3SAT can be satisfied.

Directed Disjoint Paths Problem is in NP-complete.

6 Longest Common Subsequence Problem
First, Longest Common Subsequence is in NP. Given an integer k and a set R =

{S1, S2, ..., Sp} of sequences, whose length(Si) = n. We can verify if |LCS(R)| ≥ k in
polynomial time. Just check whether each subsequence s of S1 is also the subsequence
of S2, ..., Sp, it takes O(Ck

n ∗ n ∗ (p− 1)).
Second, we prove V ertex Cover ≤p LCS. Given G =< E, V > where V =

{1, 2, ..., n} and E = eij, i, j ∈ V . For each edge eij, we construct a sequence Sij =
1, 2, ..., i−1, i+1, ...n, 1, 2, ..., j−1, j+1, ...n, R = {Sij|eij ∈ E}. If there are k vertexes
can cover all eij, then |LCS(R)| ≥ n−k holds. What’s more, V −T can be the LCS(R)
where T is the vertexes that can cover all edges in G.

Given a graph G like Figure 8, we can list all the Sij on the right side.

32 4

1

5

=>

V = 1, 2, 3, 4, 5
S12 = 2, 3, 4, 5, 1, 3, 4, 5
S13 = 2, 3, 4, 5, 1, 2, 4, 5
S14 = 2, 3, 4, 5, 1, 2, 3, 5
S25 = 1, 3, 4, 5, 1, 2, 3, 4
S35 = 1, 2, 4, 5, 1, 2, 3, 4
S45 = 1, 2, 3, 5, 1, 2, 3, 4

Figure 8: Graph G for vertex cover.

There are three vertexes that can cover all the edges, i.e. k = 3 and T = {2, 3, 4},
so |LCS(R)| ≥ n− k = 2 holds. What’s more, LCS = {1, 5}.

6



If vertexes cover is T = {2, 3, 4}, we prove LCS = {1, 5}. As vertexes cover is
T = {2, 3, 4}, for ∀eij, either i ∈ T or j ∈ T . If i ∈ T , set Sij = 1, 2, ..., i− 1, i+ 1, ...n;
else if j ∈ T , set Sij = 1, 2, ..., j − 1, j + 1, ...n. So LCS(R) = V − T . For example, for
e12, 2 ∈ T , we set S12 = 1, 3, 4, 5, so 2 /∈ LCS. Finally LCS = {1, 5}.

If LCS = {1, 5}, we prove T = {2, 3, 4} is vertexes cover. If there is one edge that T
can’t cover, say eij. so i /∈ T and j /∈ T . Sij = 1, 2, ..., i− 1, i+ 1, ...n, 1, 2, ..., j − 1, j +
1, ...n, LCS(Sij, V ) # LCS(R), contradiction! For example, suppose edge e15 exists,
e15 can’t be covered by T , S15 = 2, 3, 4, 5, 1, 2, 3, 4, V = 1, 2, 3, 4, 5. LCS(S15, V ) #
LCS(R) = {1, 5}, so e15 doesn’t exist, T is vertexes cover.

S15 = 2 3 4 5 1 2 3 4

V = 1 2 3 4 5

Figure 9: There is one intersection, so LCS(S15, V ) # LCS(R) = {1, 5}, e15 doesn’t
exist, T = {2, 3, 4} is vertexes cover.

So, the yes/no LCS problem is in NP-complete.

7


