Assignment 6 Algorithm Design and Analysis

bitjoy.net

January 2, 2016

I choose problem 1,2,3,4,5,6.

1 Integer Programming

We first show that Integer Programming is in **NP**. Obviously, given an *n*-vector x, $Ax \ge b$ can be verified in polynomial time, so it is in **NP**.

We then prove that $3SAT \leq_p ILP$. Given a 3SAT instance like this:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_4) \tag{1}$$

We will have corresponding variables y_1, y_2, y_3, y_4 in our *ILP*, if $x_i = true$, then $y_i = 1$ otherwise $y_i = 0$.

If (1) can be satisfied, the corresponding y_i s are the optimal solution to (2), that's to say (2) has optimal solution. If (2) has optimal solution, the corresponding x_i s make (1) be *true*. If (1) can't be satisfied, (2) has no optimal solution, and vice versa. So, $3SAT \leq_p ILP$.

Integer-programming is in **NP**-complete.

2 Mine-sweeper

Here is the MINESWEEPER language:

MINESWEEPER: $\{G, \xi \mid G \text{ is a graph and } \xi \text{ is a partial integer labeling of } G$, and G can be filled with mines in such a way that any node v labeled m has exactly m neighboring nodes containing mines.}

Deciding if a graph is in the MINESWEEPER language is **NP**-complete.

First, given a graph with nodes labeled with integers or containing mines, we can verify it in polynomial time. Just check whether each node labeled with m has exactly m neighboring nodes containing mines.

Second, we prove $3SAT \leq_p MINESWEEPER$. Suppose we have one 3SAT clause

$$(x_1 \vee \neg x_2 \vee x_3) \tag{3}$$

Figure 1: Gadget for each variable.

For each variable, we construct a gadget like Figure 1.

If $x_i = true$, then x_i is filled with mine, otherwise $\neg x_i$ is filled with mine. The top node labeled with '1' forces that only one of x_i and $\neg x_i$ can be true.

For clause (3), we have:

Figure 2: Gadget for each clause.

For each true assignment of this clause, we can find a placement of mines makes the graph consistent. Figure 3 is one of true assignment examples.

Figure 3: $\{x_1 = true, x_2 = false, x_3 = false\}$ is one of true assignment for clause (3), we find a placement of mines makes the graph consistent.

For the false assignment of this clause, we can't find any placement of mines makes the graph consistent. Figure 4 is the false assignment.

Figure 4: $\{x_1 = false, x_2 = true, x_3 = false\}$ is the false assignment for clause (3), we can't find any placement of mines makes the graph consistent.

So, if 3SAT can be satisfied, graph G is in the MINESWEEPER language, otherwise not.

Mine-sweeper is in **NP**-complete.

3 Half-3SAT

First, Half-3SAT is in **NP**. Given a particular assignment of n variables, we can check if m clauses satisfy Half-3SAT conditions in polynomial time. Just check each clause, if half are *true*, half are *false*, it's Half-3SAT, otherwise not.

Second, we prove $3SAT \leq_p Half - 3SAT$. Given a instance of 3SAT with *m* clauses, we construct a Half - 3SAT instance with 4m clauses like this. First *m* clauses are exactly the same as 3SAT. Next, we create *m* clauses of the form

$$(p \lor \neg p \lor q) \tag{4}$$

which is always *true*. Next, we create 2m of clauses of the form

$$(p \lor q \lor r) \tag{5}$$

These 2m clauses are always true or always false.

If 3SAT is satisfied, we set last 2m clauses be *false*. So there are 2m true clauses and 2m false clauses. Thus, Half - 3SAT is satisfied.

If Half - 3SAT is satisfied, as there are m (4) clauses, which is always true, so the last 2m (5) clauses can only be *false*. Thus, the first m clauses are true, 3SAT is satisfied.

Half-3SAT is in **NP**-complete.

4 Solitaire Game

First, Solitaire Game is in **NP**. Given a final board status, we can determine whether it satisfies the winning condition in polynomial time. Just check whether each column contains only stones of a single color and each row contains at least one stone. For $n \times n$ board, it takes O(2n), so Solitaire Game is in **NP**.

Second, we prove $3SAT \leq_p SOLITAIRE$. Given a instance of 3SAT with 2 clauses and 4 variables:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_4) \tag{6}$$

	x_1	x_2	x_3	x_4
c_1				
c_2				
\times	×	×	×	×
\times	×	×	×	×

Table 1: Initial board for (6), \blacktriangle for x_i and \blacksquare for $\neg x_i$, one row for one clause.

For each variables, \blacktriangle for x_i and \blacksquare for $\neg x_i$. So we get Table 1 for (6).

For $(y_1 \vee y_2 \vee y_3)$, y_i can be x_j or $\neg x_j$. For each clause, if $y_i = false$, we remove the corresponding stone. If (6) can be satisfied, then Table 1 is a winnable game configuration. Table 2 is one of *true* examples.

	x_1	x_2	x_3	x_4
c_1				
c_2				
\times	×	×	×	×
\times	×	×	×	×

Table 2: $\{x_1 = true, x_2 = true, x_3 = true, x_4 = true\}$ is the true assignment for clause (6), $\neg x_2 = false$, so removing the red stone in c_2 , we win the game.

For any false assignment of (6), Table 1 is not a winnable game configuration. Table 3 is one of false examples.

	x_1	x_2	x_3	x_4
C_1				
C_2				
X	×	×	×	×
X	×	×	×	×

Table 3: $\{x_1 = false, x_2 = true, x_3 = true, x_4 = false\}$ is the false assignment for clause (6), similarly, removing $\langle c_1, x_1 \rangle, \langle c_2, x_1 \rangle, \langle c_2, x_2 \rangle, \langle c_2, x_4 \rangle$, we lose the game.

So, if 3SAT can be satisfied, G is a winnable game configuration, otherwise not. Solitaire Game is in **NP**-complete.

5 Directed Disjoint Paths Problem

First, Directed Disjoint Paths Problem is in **NP**. Given k paths $P_1, P_2, ..., P_k$, we can determine whether they are Directed Disjoint Paths in polynomial time. Just go through every path and record the nodes, if more than one path go through a node, they are not Disjoint Paths.

Second, we prove $3SAT \leq_p Directed Disjoint Paths Problem$. Given an arbitrary 3SAT formula, we construct a network routing problem like this: For each clause C_i , we create a source/sink pair (s_i, t_i) , and a node $x_j^i(\neg x_j^i)$ for each literal $x_j(\neg x_j)$ in the clause. Add edges $\langle s_i, x_j^i \rangle$ and edges $\langle x_j^i, t_i \rangle$. In addition, we create source/sink pair (s_j, t_j) for each variable x_j , we get a total of k = q + n source/sink pairs, where q is the number of clauses and n is the number of literals.

For example, given a 3SAT instance with two clauses and three variables:

$$(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \tag{7}$$

We construct a graph G like Figure 5.

Figure 5: Graph G for 3SAT formula (7).

We now show that if 3SAT can be satisfied, there are node-disjoint paths for k pairs of nodes (s_i, t_i) .

Given a *true* assignment of 3SAT, we construct the k paths as follows. For each (s_j, t_j) pair that representing a variable x_j , we choose the path that corresponds to the literal that is not set to true in the satisfying assignment. For example, if $x_j = true$, we choose path (s_j, t_j) that goes through $\neg x_j$, if $x_j = false$, we choose path (s_j, t_j) that goes through $\neg x_j$, if $x_j = false$, we choose path (s_j, t_j) that

 $\{x_1 = true, x_2 = true, x_3 = false\}$ is a true assignment of formula (7), according to rules above, we get Figure 6, which has k = 5 node-disjoint paths.

Figure 6: When $\{x_1 = true, x_2 = true, x_3 = false\}$, we find k = 5 node-disjoint paths.

 $\{x_1 = false, x_2 = true, x_3 = false\}$ is a *false* assignment of formula (7), according to rules above, we can't find k = 5 node-disjoint paths. Figure 7 shows this case.

Figure 7: When $\{x_1 = false, x_2 = true, x_3 = false\}$, s_1 can't reach t_1 , failed.

Similarly, if we already have k node-disjoint paths in graph G, we just do the inverse process, the 3SAT can be satisfied.

Directed Disjoint Paths Problem is in NP-complete.

6 Longest Common Subsequence Problem

First, Longest Common Subsequence is in **NP**. Given an integer k and a set $R = \{S_1, S_2, ..., S_p\}$ of sequences, whose $length(S_i) = n$. We can verify if $|LCS(R)| \ge k$ in polynomial time. Just check whether each subsequence s of S_1 is also the subsequence of $S_2, ..., S_p$, it takes $O(C_n^k * n * (p-1))$.

Second, we prove Vertex Cover $\leq_p LCS$. Given $G = \langle E, V \rangle$ where $V = \{1, 2, ..., n\}$ and $E = e_{ij}, i, j \in V$. For each edge e_{ij} , we construct a sequence $S_{ij} = 1, 2, ..., i - 1, i + 1, ..., n, 1, 2, ..., j - 1, j + 1, ..., n, R = \{S_{ij} | e_{ij} \in E\}$. If there are k vertexes can cover all e_{ij} , then $|LCS(R)| \geq n - k$ holds. What's more, V - T can be the LCS(R) where T is the vertexes that can cover all edges in G.

Given a graph G like Figure 8, we can list all the S_{ij} on the right side.

Figure 8: Graph G for vertex cover.

There are three vertexes that can cover all the edges, i.e. k = 3 and $T = \{2, 3, 4\}$, so $|LCS(R)| \ge n - k = 2$ holds. What's more, $LCS = \{1, 5\}$.

If vertexes cover is $T = \{2, 3, 4\}$, we prove $LCS = \{1, 5\}$. As vertexes cover is $T = \{2, 3, 4\}$, for $\forall e_{ij}$, either $i \in T$ or $j \in T$. If $i \in T$, set $S_{ij} = 1, 2, ..., i - 1, i + 1, ...n$; else if $j \in T$, set $S_{ij} = 1, 2, ..., j - 1, j + 1, ...n$. So LCS(R) = V - T. For example, for $e_{12}, 2 \in T$, we set $S_{12} = 1, 3, 4, 5$, so $2 \notin LCS$. Finally $LCS = \{1, 5\}$.

If $LCS = \{1, 5\}$, we prove $T = \{2, 3, 4\}$ is vertexes cover. If there is one edge that T can't cover, say e_{ij} . so $i \notin T$ and $j \notin T$. $S_{ij} = 1, 2, ..., i - 1, i + 1, ...n, 1, 2, ..., j - 1, j + 1, ...n, LCS(S_{ij}, V) \not\supseteq LCS(R)$, contradiction! For example, suppose edge e_{15} exists, e_{15} can't be covered by $T, S_{15} = 2, 3, 4, 5, 1, 2, 3, 4, V = 1, 2, 3, 4, 5$. $LCS(S_{15}, V) \not\supseteq LCS(R) = \{1, 5\}$, so e_{15} doesn't exist, T is vertexes cover.

Figure 9: There is one intersection, so $LCS(S_{15}, V) \not\supseteq LCS(R) = \{1, 5\}$, e_{15} doesn't exist, $T = \{2, 3, 4\}$ is vertexes cover.

So, the yes/no LCS problem is in NP-complete.