Assignment 4 Algorithm Design and Analysis

bitjoy.net

November 27, 2015

I choose problem 1,2,4,7.

1 Linear-inequality feasibility

1.1 Linear programming => linear-inequality feasibility problem

Suppose we have an algorithm for linear programming:

$$\begin{array}{ll}
\min & \mathbf{c}^{\mathbf{T}}\mathbf{x} \\
s.t. & \mathbf{A}\mathbf{x} \leq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{array} \tag{1}$$

We just change the objective in (1) like this:

$$\begin{array}{ll}
\min & \mathbf{0} \\
s.t. & \mathbf{A}\mathbf{x} \le \mathbf{b} \\
& \mathbf{x} \ge \mathbf{0}
\end{array} \tag{2}$$

and run linear programming again. If (2) has optimal solution, then linear-inequality

$$\begin{aligned}
\mathbf{A}\mathbf{x} &\leq \mathbf{b} \\
\mathbf{x} &\geq \mathbf{0}
\end{aligned} \tag{3}$$

is feasible, otherwise infeasible. (1) only costs polynomial time.

1.2 Linear-inequality feasibility => linear programming

Suppose we can get the feasible solution of primal problem and its dual problem, say a and b, but neither is optimal(c). As we know, the optimal solution of primal problem must be between these two values, say a>c>b. Then we get the median(m) of a and b, and add an inequality obj>m. If new inequality is feasible, then optimal should be [m,a], otherwise [b,m]. We check feasibility of new inequality recursively until the interval is small enough.

2 Airplane Landing Problem

Let $x_1, x_2, ..., x_n$ be the exact landing time of each airplane, the LP formulation of this problem should be:

$$\max_{s.t.} \min_{i=2...n} (x_i - x_{i-1})$$

$$s.t. \quad s_i \le x_i \le t_i \quad \text{for } i \text{ in } 1...n$$

$$(4)$$

According to Robert Fourer's book Optimization Models¹, (4) is equivalent to

$$\begin{array}{ll}
\max & z \\
s.t. & z \leq x_i - x_{i-1} & \text{for } i \text{ in 2...n} \\
s_i \leq x_i \leq t_i & \text{for } i \text{ in 1...n}
\end{array}$$
(5)

For the example in problem description, if the time window of landing three airplanes are [1,60], [80,100] and [120,140], use GLPK to solve it:

```
var x1 >= 1, <=60;

var x2 >= 80, <= 100;

var x3 >=120, <=140;

var z;

maximize gap: z;

s.t. gap1: z<=x2-x1;

r.t. gap2: z<=x3-x2;

end;
```

The optimal result is z = 60 and $x_1 = 1, x_2 = 80, x_3 = 140$. Thus, they land at 10:00, 11:20, 12:20 respectively.

4 Gas Station Placement

Let $x_1, x_2, ..., x_n$ be the place of each gas station, as $d_1, d_2, ..., d_n$ and r have been given, we can get the LP formulation like this:

Similarly, (6) is equivalent to

min
$$z$$

 $s.t.$ $z \ge x_i - x_{i-1}$ for i in $2...$ n $|x_i - d_i| \le r$ for i in $1...$ n (7)

7 Simplex Algorithm

Consider the following linear program in standard form:

$$\begin{array}{ll}
\max & \mathbf{c}^{\mathbf{T}} \mathbf{x} \\
s.t. & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{array} \tag{8}$$

I have implemented the Simplex Algorithm in Python 3 according to Chapter 29 of *Introduction to Algorithms*:

¹http://www.4er.org/CourseNotes/Book%20A/A-III.pdf

```
1 \# -*- coding: utf-8 -*-
2
  Created on Thu Nov 26 18:44:28 2015
3
  @author: czl
5
6
  import numpy as np
  class SIMPLEX:
10
      m = 0
11
12
      n = 0
13
      def ___init___(self):
14
          pass
      def INITIALIZE (self, A, b, c):
17
          k = b.argmin()
18
          if b[k] >= 0: # Note, I only implemented the easy case.
               AA = np.zeros((self.m + self.n + 1, self.m + self.n + 1))
20
               bb = np.array([0.0] * (self.m + self.n + 1)) # 0.0 for float64
21
               cc = np.array([0.0] * (self.m + self.n + 1)) # 0.0 for float64
               AA[self.n + 1 : self.n + self.m + 1, 1 : self.n + 1] = A
23
               bb[self.n + 1 : self.n + self.m + 1] = b
24
               cc[1 : self.n + 1] = c
               return(np.arange(1, self.n + 1, 1), np.arange(self.n + 1, self)
26
      n + self.m + 1, 1, AA, bb, cc, 0
27
      def PIVOT(self, N, B, A, b, c, v, l, e):
28
          AA = np.zeros((self.m + self.n + 1, self.m + self.n + 1))
29
          b[e] = b[1] / A[1][e]
30
          for j in N:
31
               if j != e:
32
                   AA[e][j] = A[l][j] / A[l][e]
33
          AA[e][1] = 1 / A[1][e]
          for i in B:
35
               if i != 1:
36
                   b[i] = b[i] - A[i][e] * b[e]
                   for j in N:
38
                       if j != e:
                           AA[i][j] = A[i][j] - A[i][e] * AA[e][j]
40
                   AA[i][1] = -A[i][e] * AA[e][1]
          v = v + c[e] * b[e]
42
          for j in N:
43
               if j != e:
44
                   c[j] = c[j] - c[e] * AA[e][j]
45
          c[1] = -c[e] * AA[e][1]
46
          c[e] = 0 \# clear \ c \ of \ enter
47
          b[1] = 0 \# clear b of leave
48
          NN = np.delete(N, np.where(N = e)[0][0])
49
          NN = np.append(NN, 1)
          BB = np. delete(B, np. where(B = 1)[0][0])
51
          BB = np.append(BB, e)
          return (NN, BB, AA, b, c, v)
54
      def SOLVE(self, A, b, c):
          self.m, self.n = A.shape
57
          N, B, A, b, c, v = self.INITIALIZE(A, b, c)
```

```
while c.max() > 0:
59
               d = np.array([float('inf')] * (self.m + self.n + 1))
60
               e = c.argmax() # choose index of max c
               for i in B:
                    if A[i][e] > 0:
63
                        d[i] = b[i] / A[i][e]
64
               l = d.argmin()
65
               if d[1] = float('inf'):
                    return -2 \# unbounded
                else:
                   N, B, A, b, c, v = self.PIVOT(N, B, A, b, c, v, l, e)
           x = np.array([0] * self.n)
70
           for i in range (self.n):
               if i + 1 in B:
72
                    x[i] = b[i + 1]
           return x
74
75
     ___name__ == "___main___":
      A = np.array([[1, 1, 3],
78
                       [2,2,5],
79
                      [4,1,2]
80
      b = np.array([30,24,36])
      c = np. array([3, 1, 2])
82
      s = SIMPLEX()
83
      x = s.SOLVE(A, b, c)
```

As I was fully occupied with lots of things, I only implemented the easy case in finding an initial solution, see function **INITIALIZE**. But I will finish another case in the future.

Here is a test example:

We have:

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 2 & 5 \\ 4 & 1 & 2 \end{bmatrix} \qquad b = \begin{bmatrix} 30 \\ 24 \\ 36 \end{bmatrix} \qquad c = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

After running my implementation, we get:

$$x = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix}$$

The optimal solution is $z = 3x_1 + x_2 + 2x_3 = 28$, the result is the same as GLPK's.