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I choose problem 1,2,4,7.

1 Linear-inequality feasibility

1.1 Linear programming => linear-inequality feasibility problem

Suppose we have an algorithm for linear programming:

min cTx
st. Ax<b (1)
x>0

We just change the objective in (1) like this:

min 0
st. Ax<b (2)
x>0

and run linear programming again. If (2) has optimal solution, then linear-inequality

Ax <b
X;O (3)

is feasible, otherwise infeasible. (1) only costs polynomial time.

1.2 Linear-inequality feasibility => linear programming

Suppose we can get the feasible solution of primal problem and its dual problem,
say a and b, but neither is optimal(c). As we know, the optimal solution of primal
problem must be between these two values, say a>c>b. Then we get the median(m)
of a and b, and add an inequality obj>m. If new inequality is feasible, then optimal
should be [m,a], otherwise [b,m]. We check feasibility of new inequality recursively until
the interval is small enough.
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2 Airplane Landing Problem

Let x4y, xs,...,x, be the exact landing time of each airplane, the LP formulation of
this problem should be:

max ming—s ,(; — 1) (4)
s.t. s < w; <ty for7in 1..n

According to Robert Fourer’s book Optimization Models', (4) is equivalent to

max z
st. z<uwzj—x;_; foriin2..n (5)
s; <w; <t; foriinl..n

For the example in problem description, if the time window of landing three airplanes
are [1,60], [80,100] and [120,140], use GLPK to solve it:

var x1 >= 1, <=60;
var x2 >= 80, <= 100;

3 var x3 >=120, <=140;
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var z;
maximize gap: z;
s.t. gapl: z<=x2—x1;

7 s.t. gap2: z<=x3—x2;

end ;

The optimal result is z = 60 and 1 = 1,2, = 80,23 = 140. Thus, they land at
10:00, 11:20, 12:20 respectively.

4 (Gas Station Placement

Let x1, o, ..., x, be the place of each gas station, as dy,ds,...,d, and r have been
given, we can get the LP formulation like this:

min max;—s_,(x; — x;_1) (6)
s.t. |z —d;| < foriin 1..n

Similarly, (6) is equivalent to
min z
st. z>x;—wx;—y foriin2..n (7)
|z; —d;| <r foriinl..n

7 Simplex Algorithm

Consider the following linear program in standard form:

max cTx
st. Ax<b (8)
x>0

I have implemented the Simplex Algorithm in Python 3 according to Chapter 29 of
Introduction to Algorithms:

lhttp://www.4er.org/CourseNotes/Book%20A/A-III.pdf
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# —* coding: utf—-8 —*
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Created

@author :
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on Thu Nov 26 18:44:28 2015
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import numpy as np

class SIMPLEX:

m —
n =

def

def

0
0

init__ (self):
pass

INITIALIZE (self , A, b, c):

k = b.argmin ()

if b[k] >= 0: # Note, I only implemented the easy case.
AA = np.zeros((self.m + self.n + 1, self.m 4+ self.n + 1))
bb = np.array ([0.0] * (self.m + self.n + 1)) # 0.0 for float64
cc = np.array ([0.0] * (self.m + self.n 1)) # 0.0 for float64
AA[self.n + 1 : self.n + self.m+ 1, 1 : self.n + 1] = A
bb[self.n + 1 : self.n + self . m+ 1] = b
cc[l : self.n + 1] =c¢
return (np.arange (1, self.n + 1, 1), np.arange(self.n + 1, self

.n + self.m+ 1, 1), AA, bb, cc, 0)

def

def

PIVOT(self , N, B, A, b, ¢, v, 1, e):
AA = np.zeros((self m—|— self.n —|— 1, self .m + self.n 4+ 1))

ble] = b[1] / A[l][e]

for j in N:
if j 1= e:
AAfe][j] = A[L][j] / A[1][e]
AAfe][1] =1 / A[l][e]
for i in B:
if i l=1:
b[i] = b[i] — A[i][e] * ble]
for j in N
if j I= e:
[110J] = A[1][j] — A[i][e] * AA[e][j]
AA[T][1] = — A[i][e] * AA[e][1]
v=v+ cle] * ble]
for j in N:
if j!=e
c[j] =c[j] — cle] * AAfe][]]
c[1] = — cle] * AA[e][1]
cle] = 0 # clear ¢ of enter
b[l] = 0 # clear b of leave
= np.delete (N, np.where( N=—2¢)[0][0])

NN

NN = np.append (NN

= np.delete (B,
BB = np.append (BB e)

return (NN, BB, AA, b, ¢, v)

)
p.where( B = 1) [0][0])

oo}
=
|

SOLVE(self , A, b, ¢):
self .m, self.n = A.shape
N, B, A, b, ¢, v = self .INITIALIZE(A, b, c)
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while c¢.max() > 0:
d = np.array ([float (’inf’)] * (self.m + self.n + 1))
e = c.argmax () # choose index of max c
for 1 in B:
if Ali][e] > O:
d[i] = b[i] / A[i][e]
1 = d.argmin ()
if d[1] = float (’inf’):
return —2 # unbounded
else:
N, B, A, b, ¢, v = self . PIVOT(N, B, A, b, ¢, v, 1, e)
x = np.array ([0] * self.n)
for i in range(self.n):
if i + 1 in B:
x[i] = b[i + 1]

return x
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A = np.array ([[1,1,3],
202.5],
[4.12]])

np.array ([30,24,36])

= np.array ([3,1,2])

— SIMPLEX ()

s .SOLVE(A, b, ¢)
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As I was fully occupied with lots of things, I only implemented the easy case in
finding an initial solution, see function INITIALIZE. But I will finish another case in
the future.

Here is a test example:

max 31’1 + X9 + 21’3
s.t. 1+ Tg + 3%3 < 30
2I1 + 21‘2 + 51’3 S 24 (9)

41’1 + 9 + 21’3 S 36
Ty1,T2,T3 2 0

We have:
1 1 3 30 3
A=12 2 5 b= |24 c= |1
4 1 2 36 2

After running my implementation, we get:
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The optimal solution is z = 3x1 + x9 + 2x3 = 28, the result is the same as GLPK’s.



